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Using the Green’s-function formulation, we obtain a general expression for the spin para-
magnetic susceptibility of electrons in a superconductor, X, = (1~ pg¢/p)X,, where X, is the spin
paramagnetic susceptibility of electrons in the normal state and pg is a pseudosuperelectron
density. The result with py replaced by the superelectron density is sufficiently general to
apply to cases of strong coupling, to superconductors with magnetic and nonmagnetic im-

purities, and to type-II superconductors.

We find a finite spin paramagnetic susceptibility
at zero temperature for a pure strong-coupling superconductor,

For impure superconduc-

tors, the result agrees very well with the results found in the Knight shift experiments.

The main purpose of this paper is to derive a
general expression for the spin paramagnetic sus-
ceptibility of electrons in a superconductor, using
the Green’s-function formulation.

Since the theory of Bardeen, Cooper, and
Schrieffer! (BCS) for a superconductor is based on
the pairing of electrons with opposite momentum
and spin, the total spin of the system in the ground
state (7'=0) is zero and the spin paramagnetic sus-
ceptibility vanishes,? The latest experiment® on
superconducting Al agrees with the BCS theory, but
the experiments on superconducting Sn, Pb, and
Hg have indicated that the spin paramagnetic sus-
ceptibility for these superconductors®’® is finite at
zero temperature. Many explanations for this
finite spin paramagnetic susceptibility have been
proposed, ® and for the case of weak coupling,
Abrikosov and Gor’kov’ were able to show that the
spin-orbit interaction leads to a finite value of the
spin paramagnetic susceptibility at zero tempera-
ture,

We have used the Green’s-function formulation
to derive a general expression for the spin para-
magnetic susceptibility of electrons in a supercon-
ductor,

Xs= (1= pg/P)Xn 1)

where ¥, is the spin paramagnetic susceptibility of
electrons in the normal state and p, is a pseudo-
superelectron density. We show that p, can be re-
placed by the superelectron density for a pure
strong-coupling superconductor, and for a super-
conductor with magnetic and nonmagnetic impurities
p. is identical with the superelectron density in the-
special case where the spin-flip and ordinary scat-
terings are equal. For type-II superconductors,
we argue that ps' may be replaced by the superelec-
tron density.

To derive Eq. (1) we consider a small magnetic
disturbance 6B(T) at the point ¥; the interaction
associated with this disturbance is given by

leo

J dFH(E) - 6B(F) , (2)

where 1(¥) is the spin magnetic moment of the elec-
trons at the point . We can write the spin mag-
netic moment in terms of the electron-wave field
operators ¥}(T) and ¢,(%):

B(F) = palel(F)o, (F) = $1(F)u, (F)] , ®)

where ug is the Bohr magneton. It is convenient
to write the above in the Nambu spinor notation®

I t t
U= " and ¥'= () 9) . 4)

4
Then the interaction energy becomes
pp [ af ¥(DE(E)OB(), 6)

where we neglect a constant term which does not
affect the final result, The induced magnetization
associated with 8B is given by '

M(F,0)= 13 [dx’ (¥ (0¥ (), ¥ (Y (x)DOB(x") ,
(6)

where x=(T,#). By taking the Fourier transform
of Eq. (6), we may write the spin paramagnetic
susceptibility of the electrons at temperature T as

Xs(T)=lim Tr 2, mG(k+ q)MG(k) as g-0, (7)

where k= (K, &), ¢=(d,q,), and G is the 2% 2
matrix Green’s function®

G (k)= Z(k) [ko'ro -A (k)'r1] = €T3 . (8)

Here we denote the Pauli matrices by 7;; the wave-
function renormalization factor Z(k), gap parameter
A(E), and renormalized quasiparticle energy €, are
solutions of the integral equations given in Ref. 9,
M is the usual dressed 2 x2 vertex matrix function,
and m is the bare vertex function, m= ug7,.

For a weak-coupling superconductor with mag-
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netic and nonmagnetic impurities, after averaging
over the impurities and performing the angular
integration, we can write the integral equation for
M as®10

M=m+ (C=T)i [ d—f} 1,GEMGE)T, , ()

where 2T" and 2T, are the inverse of the relaxation
times due to the ordinary and spin-flip scatterings,
respectively. We have used the fact that at low
temperatures only the electrons near the Fermi
surface play an important role in the calculation of
the properties of the system, and the vertex func-
tion M is assumed to depend only on w, Inserting
the representation of the vertex function ’

M= ug(MoTo+ MyTy+ MpTy+ MyTy) (10)
into Eq. (9), we find
My=[1-("-Ty\)B]/D,
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and

A,=A - 2T, /(wi+ A%/2
The integrals were performed by using the Green’s
function (8) with k)= w=iw,= (2n+1)7T, and Z(k)
and A(g) are assumed to be functions of only w,
i.e., Z,=Z(iw,) and A,=A(w,). The gap parameter
A is the solution of the integral equation®

A=N(0)Vpcs [dw (tanhw/2T) Refa/ [Q%(w) - A%]1/2} |
(13)

where N(0) is the density of states of one spin at
the Fermi surface, Vycg is the BCS coupling con-
stant, and Q is the solution of

Q(w) = w+42l Q(w)/ [Q%(w) - A%]' /2, (14)

so A depends on the depairing parameter I'; and the
temperature.

(11) Inserting the M into Eq. (7), we obtain the spin
My=(T-T\)C/D, paramagnetic susceptibility as
d
- Xs=Xa(L = PJ/p) , 15)
My=My=0,
where!?!
where ’ 2 2/ 2 2\3/2 2. A2 or ] 1
= A A .
D=1-(T-T)(A+B)+ (T -T )AB-C?) ps/p=2in2nTA/ [ 80)° %+ Wi+ AD2T,] . (16)
In Eq. (5.36) of Ref. 9 we calculated the superelec-
{2 A2y1/2
= [(w,+ a4 21 )/ 2, , tron density p,(T';,I')/p for an impure supercon-
de,, A2 ductor, and comparing that result with Eq. (16),
A=f‘2—7r— Tr7,G()T,G (%) = EZL , we see that Eq. (16) is just the expression for the
" superelectron density when I';=T, i.e., p,(T,, T;)
de,, w? =ps(T'y). We note that it has not been necessary to
B= f o Tr7,G(k)7,G (k) = E:' ) (12) make any assumption about the relative size of I"
and I'; in order to obtain Eq. (15). At zero tem-
_ [ de, WA, perature we can evaluate the sum in Eq. (16) [see
C_f 27 Tr7oG(R)7,G k) = R, '’ Eq. (5.41) in Ref. 9] and the spin paramagnetic
susceptibility becomes
R,= (wj+ A% 2z, , \
Xs= Xal 5x(7—tan ) + %G ~ $xB)/x],  (17)
Z,=1+(L+T)/(w2+aR)1/2 where x5=6(x—1)(x% - 1)}/2 and «x is the solution of
J
x=—£5—-=&[x + (1+ 23 2] exp| (I - tan-ly,) - 20 (18)
AT,,0 1, 7° 0 2\2 o T 2x| ¢

Here 6(x— 1) is the usual step function, 1 for x>1
and zero otherwise, §, and I, are the BCS coherence
length and the mean free path due to the spin-flip
scattering.

We note that from Egs. (13) and (18) in the limit
of 2I'; -~ $A(0, 0) = $Agcs, the gap parameter
A(T,, 0) vanishes; i.e., the system becomes the
normal state. For 0.456<2I';/A(0,0)<0.5 or
1 <x <, the effective energy gap vanishes and we
have gapless superconductivity where excitations
of arbitrarily low energy are allowed. ®!® In fact,
from Eq. (17) for x=1 we obtain X =0.59X,, and
for x=2, x,=0.88),, and this is the range of the

r
experimental results.
If we approximate A,=A and set 2';=2/37,,,
where T, is the relaxation time due to the spin-
orbit interaction, Eq. (16) reduces to the result
found by Abrikosov and Gor’kov,” who needed to
assume I'> T in contrast to our derivation. Set-
ting 2I';=0 in Eq. (16), we obtain the result found
by Yosida® for a pure weak-coupling superconductor.
In the case of a pure strong-coupling supercon-
ductor, the vertex correction resulting from the
electron-phonon interaction is of the order of the
square root of the electron and ion mass ratio,
(m,/M;)!'?, and can be neglected.!® Then we may
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write Eq. (7) as i < 1N lim Tr D [0+ 0)6() - (€6,
Xs(T)= 12 lim X, TrG(k+ q)G(k) as g-0. (19) " =0 (20)

There are some difficulties inthe limiting processes
qo~02and §-0. To avoid these difficulties it is
convenient to write the difference between the sus-
ceptibilities in the superconducting and normal

states: |

J,(g=0)=limTr Z, [v,G(&+q)T ,G(k) -

q~0

= 3 [NOA]' im Tr 2 [G(e+ q)G (%) -
k

0

where A is the London parameter. Combining Egs.
(20) and (21), we obtain Eq. (1) with p,=p,. For

a pure strong-coupling superconductor such as Ph,
the depletion of the superelectron density!* is about
22 to 25%, and we expect a finite spin paramagnetic
susceptibility at zero temperature.

For a type-II superconductor, we may write!® the
superelectron density in terms of the pair wave
function ¥:

bs _ 2y _ __Z_L< _ fL)

p == \! Y
where k is the Ginzburg-Landau parameter'®
(k>2!/2) and

B=(| ¥[HA|w|?? .

The numerical value of 8 is 1.16 for a triangular
lattice!” structure of flux lines and 1.18 for a square
lattice structure of flux lines in a superconductor.

H and H, are the effective and the second critical
magnetic fields, respectively. If we set p.=p; in
Eq. (15), then the spin paramagnetic susceptibility
in a type-II superconductor at the magnetic field
near H,, would be'®

Xs/Xn=H/Hy5 . (23)
The right-hand side of Eq. (23) is proportional to

(22)

(GG)n]Au (q) = - (ps/p)A-lAu- (q =0) )

where (GG), is the value of GG in the normal state.
The right-hand side of Eq. (20) is just the expres-
sion for the superelectron density in a supercon-
ductor. To see this, we consider the induced cur-
rent density J associated with the vector potent1a1
X and find®

(7.GT,G),]A,(q)

1)

M
the number of flux lines in a superconductor, which
is a result that one obtains by consideration of the
bound states in a superconductor.!® It is desirable
to check Eq. (23) experimentally. We note that this
is the same form as the resistivity due to flux lines
in a type-II superconductor. 2°

In conclusion, the depletion of the superelectron
density yields a finite value of the spin paramag-
netic susceptibility of electrons in a superconductor
at zero temperature. The depairing scattering may
give the major contribution to the depletion of the
superelectron density, but it is not required in
order to obtain a finite value of the spin paramag-
netic susceptibility at zero temperature. The de-
pletion of the superelectron density can be caused
by strong-coupling effects as well.

The author wishes to thank D, Beck and V. Celli
for many discussions and for reading the manu-
script. )

Note added in proof. 1 would like to thank Pro-
fessor John Bardeen for discussions and a conjec-
ture that the finite value of the spin paramagnetic
susceptibility of electrons in a superconductor at

. zerotemperature may be attributed tothe Van Vleck

magnetism. The proof of this conjecture remains
to be investigated.
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We present a detailed experimental study of the behavior of Pb-Pb superconducting diodes
in phonon generation and detection. It is shown that the detection process occurs via pair
breaking as well as phonon-assisted tunneling. The present experimental results do not
resolve the distribution in energy of the phonons emitted by the generator. However, the
derivative of the detected signal with respect to the generator current contains well-defined
structure coincident with the phonon density of states of Pb calculated by McMillan and

Rowell.

I. INTRODUCTION

Superconducting tunnel diodes have been success-
fully used! as phonon generators and detectors.
Since then we set as our goal the experimental de-
termination of at least the coarse features of the
generated phonon spectrum for various levels of
excitation and an understanding of the mechanisms
responsible for the detection process. This infor-
mation is essential if such a device is to be used
for studying propagation and absorption of phonons
in solids or in liquid helium in a frequency range
not attainable by conventional ultrasonic devices.

We use superconductor-barrier-superconductor
tunnel diodes evaporated on two parallel faces of a
sapphire single crystal ~1 cm long and 1 cm diam- -
eter. The diode area is 0.1X0.1 cm and the film
thickness is ~1.5x10° cm. To the diode used as
phonon generator, we apply pulses of amplitude
V> 2A, where 2A is the energy gap of the super-
conductor and V is in electron volts. The excited
quasiparticles produced by tunneling relax and re-
combine emitting phonons.?»® The relaxation pro-
duces phonons of energy w in the range 0<w < V= 2A
while the recombination into Cooper pairs produces
phonons of w>2A, Some of the generated phonons
propagate in the sapphire crystal in rectilinear tra-
jectories to the detecting diode. Coincident with
the time of arrival of the phonons, a voltage pulse

S is measured across the detector which is biased
at a voltage Vz < 2A from a dc constant-current
source. The major contribution to the signal S
comes from those incident phonons of w > 2A.! Such
phonons break Cooper pairs in the detector result-
ing in an increase in the quasiparticle population
above the gap edge, and hence an enhancement in
the tunneling current at V3<2A, Using this simple
model for phonon generation and detection, an ade-
quate interpretation was obtained for previously
published results.! In the following paragraphs we
discuss some details of the electron-phonon and
electron-electron interactions relevant to phonon
generation in superconducting tunnel diodes.

First we discuss the decay thresholds and their
effects on the generated phonon spectrum. Excited
particles of energy E~ A will either directly recom-
bine in pairs emitting phonons of energy w > 2A or
first individually decay to the top of the gap emitting
relaxation phonons with w = E — A and then recombine
in pairs emitting phonons with w =2A, Since at E
= A the group velocity of an excited quasiparticle is
zero, the threshold®® E, for the relaxation process
is given by (E; — A)> 80202 A where v, is the sound
velocity and v is the electron velocity at the Fermi
level. This threshold is of the order of 2x107°A
for the longitudinal and 0. 26x107°A for the trans-
verse phonons in Pb, Ignoring gap anisotropy, the
recombination phonons are emitted in an extremely



